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Abstract

E�ective moduli of a two-dimensional anisotropic solid with elliptical holes having an arbitrary (non-random)
orientational distribution are given in closed form. The results are derived in the non-interacting approximation.
Besides being rigorous at small defect densities, this approximation constitutes the basic building block for various

approximate schemes. Proper tensorial parameters of defect density (dependent on ellipses' eccentricity and their
orientations relative to the matrix anisotropy axes) are identi®ed. When derived in terms of such parameters,
expressions for the e�ective moduli cover, in a uni®ed way, mixtures of holes of diverse eccentricities and arbitrary

orientational distribution. A number of special cases (circles, cracks of various orientational distributions) are
discussed. If the ®eld of defects is ``geometrically isotropic'' (holes of the circular shapes, or randomly oriented
cracks), it reduces the matrix anisotropy. 7 2000 Published by Elsevier Science Ltd.

Keywords: Anisotropy; Holes; Cracks; E�ective moduli

1. Introduction and basic equations

The overall elastic properties of a two-dimensional anisotropic matrix with elliptical holes having
arbitrary orientational distribution (Fig. 1) are analyzed. Results are obtained for the general matrix
anisotropy, with particular attention to the case when the matrix is orthotropic. Some preliminary
results for orthotropic matrix have been presented by Tsukrov and Kachanov (1998).

One of the key problems is to identify the proper parameters of hole density. We call the density
parameter proper if it correctly re¯ects the individual hole contributions to the overall elastic
compliance. Only in terms of such parameters can the e�ective compliances be uniquely expressed.
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When derived in terms of proper parameters, expressions for the e�ective moduli cover, in a uni®ed
way, mixtures of holes of diverse eccentricities and arbitrary orientational distribution.

Identi®cation of the proper density parameters (generally, tensorial) is a non-trivial problem, since the
individual hole contributions into the overall compliances depend not only on the hole shapes but on
their orientations relative to the matrix anisotropy axes. We show, following Kachanov et al. (1994),
that such parameters are implied by the structure of the elastic potential.

For illustration, consider a two-dimensional solid with cracks. A scalar crack density parameter (for
randomly oriented cracks) was introduced by Bristow (1960):

r � 1

A

X
l �k�2 �1�

where A is the representative area, 2l �k� is the length of kth crack). For non-random crack orientations,
r was generalized by Kachanov (1980) to second rank crack density tensor

aaa � 1

A

X�l 2nn��k� �2�

where n is a unit normal to crack and nn denotes a dyadic product with components ninj:
In the case of cracks in the isotropic matrix, expressing the e�ective moduli in terms of aaa covers all

orientational distributions in a uni®ed way and establishes the overall anisotropy. However, in the case
of an anisotropic matrix, aaa (or r in the case of random orientations) cannot always be used as density
parameter, for the following reasons.

Tensor aaa and scalar r take the individual crack contribution as proportional to l 2, whereas the actual
``relative weight'' of an individual crack should be adjusted according to the orientation with respect to
the matrix anisotropy axes. (Cracks normal to the sti�er direction of the matrix produce a higher impact
on the overall compliance, as compared to cracks normal to the ``softer'' direction). As shown by
Mauge and Kachanov (1994) and in the text to follow, these considerations give rise to fourth rank
tensor of crack density (that can be replaced, in the case of the isotropic matrix, by second rank crack
density tensor aaa).

Similarly, in the case of holes, the usual density parameter Ð relative area of holes (porosity) p that
takes the individual hole contributions as proportional to their areas Ð is adequate only in the case of
circular holes. For non-circular holes, the individual hole contributions depend on the hole shapes and
orientations; the proper hole density parameter should re¯ect these factors (see Kachanov et al., 1994).

Fig. 1. Anisotropic matrix with arbitrarily oriented elliptical holes.
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The present work incorporates both anisotropy of the matrix and non-circularity of holes, by
considering elliptical holes arbitrarily oriented in an anisotropic matrix. Besides providing a uni®ed
treatment, this approach has the advantage of covering mixtures of defects of diverse shapes (including
cracks).

We start with the analysis of one isolated elliptical hole, arbitrarily oriented in an anisotropic matrix.
The overall strain (per reference area A ) in a material containing a hole with boundary G having a unit
normal n (directed outward to material, i.e. inside the hole) under remotely applied stress sss is

eee � S0 : sss� Deee
�

or eij � S0
ijklskl � Deij, in indicial notations

�
�3�

where S0 is the compliance tensor of the matrix and a colon denotes contraction over two indices. The
strain due to cavity

Deee � ÿ 1

2A

�
G
�un� nu� dG �4�

where u denotes displacements of the points of G and un, nu are dyadic (tensor) products of two vectors.
Formula (4) results from application of the divergence theorem to a solid with a cavity. It is an

immediate consequence of a footnote remark of Hill (1963) and was used in the explicit form by a
number of authors, see, for example, Vavakin and Salganik (1975).

Due to linear elasticity, Deee is a linear function of sss and hence can be written as

Deee � H : sss �5�
where fourth rank tensor H is the cavity compliance tensor (possessing the usual symmetries Hijkl �
Hjilk � Hklij implied by symmetries eij � eji, sij � sji and by the existence of elastic potential). H-tensors
were previously found for a number of two- and three-dimensional shapes of cavities in the isotropic
matrix by Tsukrov and Kachanov (1993) and Kachanov et al. (1994) and, for an anisotropic matrix
with cracks of arbitrary orientations, by Mauge and Kachanov (1994). The present work considers
elliptical holes arbitrarily oriented in an anisotropic matrix.

As seen in the text to follow, it is advantageous to formulate the problem of e�ective properties in
terms of the elastic potential (rather than compliances): the structure of the potential implies the proper
parameters of defect density.

The elastic potential in stresses f �sss���1=2�sss : eee�sss� of a solid with a hole has the form

f�sss� � 1

2
sss : S0 : sss� 1

2
sss : H : sss � f0 � Df �6�

For the isotropic matrix, f0��1=2E0���1� n0�tr�sss � sss�ÿ n0�tr sss� 2, where E0, n0 are Young's modulus and
Poisson's ratio of the matrix in the 2D and 3D cases of plane stress; in plane strain, E0 and n0 are to be
understood as E0 � E0=�1ÿ n2

0 � and n0 � n0=�1ÿ n0�: For the orthotropic 2D solid, f0 is given by
formula (19) of the next section.

In the important case of a crack, G shrinks to a line and integral in (4) reduces to integration of
ÿn�u� ÿ uÿ�ÿ �u� ÿ uÿ�n along the crack line, where u� ÿ uÿ is the displacement discontinuity vector
along the crack. For a rectilinear crack of length 2l, unit normal n is constant along the crack and the
integral reduces to ÿ�nb� bn� multiplied by l 2. Here dimensionless vector b � hu� ÿ uÿi=l is the
average over the crack displacement discontinuity normalized to l. Thus, the strain due to a 2D
rectilinear crack (per reference area A ) is Deee � �l 2=A��bn� nb�:

Due to linear elasticity, vector b is a linear function of the traction n � sss induced by sss at the crack site
in a continuous material:
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b � n � sss � B �7�
where second rank tensor B, introduced by Kachanov (1992), can be called the crack compliance tensor.
It is symmetric (as follows from Betti's reciprocity theorem, applied to the cases of normal and shear
loading of the crack). B-tensors for several types of cracks in the isotropic matrix (elliptical cracks,
cracks constrained against the normal opening, ¯uid ®lled cracks) were derived by Kachanov (1992,
1993) and for cracks arbitrarily oriented in a 2D anisotropic matrix Ð by Mauge and Kachanov (1992,
1994).

Thus, in the case of a 2D rectilinear crack,

Df � 1

2
sss : Deee � 1

A
sss : l 2nBn : sss �8�

hence identifying H-tensor of a crack as

H � 2l 2

A
nBn �9�

Note that the appropriate symmetrization Hijkl � Hjilk � Hklij (due to eij � eji, skl � slk and to the
existence of elastic potential) implies that components of (9) are Hijkl��l 2=2��niBjknl� njBiknl�niBjlnk�
njBilnk�:

We now consider a matrix with many holes in the framework of non-interaction approximation. In this
approximation, each hole is placed into sss-®eld and does not experience any in¯uence of neighbors. This
approximation is of the fundamental importance, by the following reasons.

1. The results are rigorous at small defect densities, provided the mutual positions of defects are random
(the last restriction is necessary, to rule out the arrangements having small overall density but
consisting of widely spaced clusters of closely spaced strongly interacting defects).

2. It constitutes the basic building block for various approximate schemes (self-consistent, di�erential,
Mori-Tanaka's) that place non-interacting defects into some sort of e�ective environment (e�ective
matrix or e�ective stress).

3. For cracks, the non-interaction approximation appears to yield accurate results at high crack densities
and strong interactions, provided the mutual positions of cracks are uncorrelated, due to cancellation
of the competing interaction e�ects of shielding and ampli®cation (see Kachanov (1992) and Mauge
and Kachanov (1994) for computer experiments on interacting cracks; recent physical experiments of
Carvalho and Labuz (1996), although not fully su�cient, seem to con®rm this fact).

Remark. The non-interaction approximation should be distinguished from the small density (``dilute'')
limit, in which the results are linearized with respect to defect density (a typical result for a certain
e�ective modulus M in the non-interaction approximation has the structure M=M0 � �1� Cx�ÿ1 where
x is the appropriate density parameter and C is some constant; in the ``dilute limit'', it is linearized to
1ÿ Cx: This linearization is an unnecessary operation Ð it only reduces the range of applicability of the
non-interaction approximation.

Thus, in the non-interaction approximation, the potential change due to cavities is

Df � 1

2
sss :

X
H
�k� : sss �10�

Tensor H� �PH�k� (where summation may be replaced by integration over orientations, for the
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computational convenience) takes the individual cavity contributions with correct ``relative weights''
and, thus, constitutes the proper general parameter of defect density. The text to follow identi®es this
parameter for elliptical holes in an anisotropic matrix and further specializes it for the cases of cracks
and circles. The e�ective elastic moduli are obtained from

eij � @f

@sij
� @

@sij

�
f0 � 1

2
sss : H� : sss

�
�11�

In the case of cracks, (10) takes the form

Df � sss :

�
1

A

�X�l 2nBn��k� : sss �12�

This representation identi®es the fourth rank tensor �1=A�P�l 2nBn��k�, appropriately symmetrized, as
the proper general parameter of crack density. In the case of the isotropic matrix, B � �p=E �I, where I is
the unit tensor. Then, since sss : nIn : sss � sss � sss : nn, potential Df � �p=E �sss � sss : aaa thus identifying a
symmetric second rank crack density tensor aaa given by Eq. (2) as the proper parameter that replaces, in
this case, fourth rank density parameter (10).

2. Cavity compliance tensor for an elliptical hole arbitrarily oriented in an anisotropic matrix

2.1. Relevant representations of 2D anisotropic elasticity

Following Lekhnitski (1963), we express stresses and displacements in a 2D anisotropic elastic solid in
terms of two complex stress functions f�z1� and c�z2�, where z1 � x� m1y, z2 � x� m2y: Complex
parameters m1, m2 and their conjugates �m1, �m2 are roots of the characteristic equation

S1111m4 ÿ 2S1112m3 � �2S1122 � S1212 �m2 ÿ 2S2212m� S2222 � 0 �13�
where Sijkl are elastic compliances in coordinate system x, y: Positive de®niteness of the strain energy
implies that m1, m2 cannot be real. We denote mk � ak � ibk where ak, bk are real constants and bk > 0:

The stresses and displacements are expressed in terms of f�z1� and c�z2� as follows:

sxx � 2Re
h
m2
1f
0�z1� � m2

2c
0�z2�

i
syy � 2Re

�
f 0�z1� � c 0�z2�

�
sxy � ÿ2Re

�
m1f

0�z1� � m2c
0�z2�

�
u1�x, y� � 2Re

�
p1f�z1� � p2c�z2 �

�
u2�x, y� � 2Re

�
q1f�z1� � q2c�z2 �

� �14�

where pk � S1111m2
k ÿ S1112mk � S1122, qk�mÿ1k �S1122m2

kÿS2212�S2222�:
In the case of orthotropy (coordinate axes parallel to the orthotropy axes), Eq. (13) becomes

biquadratic:
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S1111m4 � �2S1122 � S1212 �m2 � S2222 � 0 �15�
and has purely imaginary roots m1, 2, �m1, 2 � ÿm1, 2:

m1, 2 �
i�������������

2S1111

p
n
�2S1122 � S1212 �2

�
�2S1122 � S1212 �2ÿ4S1111S2222

�1=2o1=2 �16�

They can be expressed in terms of ``engineering constants'' frequently used for the orthotropic materials
(Young's moduli E1, E2, shear modulus G12 and Poisson's ratio n12, where x1x2 are the principal axes
of orthotropy) by ®nding m1m2 and m1 � m2 from Viete's theorem

m1, 2 � ib1, 2 �
i

2

24 E1

G12
ÿ 2n12 � 2

�������
E1

E2

r !1=2

2

 
E1

G12
ÿ 2n12 ÿ 2

�������
E1

E2

r !1=2
35 �17�

where Ei, Gij, and nij are Young's moduli, shear moduli and Poisson's ratios of the matrix in the case of
plane stress. In plane strain, Gij retains its meaning, whereas Ei and nij are to be understood as
E1 � E1=�1ÿ n13n31�, E2 � E2=�1ÿ n23n32� and n12 � �n12 � n13n32�=�1ÿ n13n31�, n21 � �n21 � n23n31�=�1ÿ
n23n32�:

If roots m̂k correspond to coordinate system x̂1, x̂2, then roots mk corresponding to the system x1, x2

rotated by angle j counterclockwise with respect to x̂1, x̂2, are related to m̂k by the following simple
transformation (Lekhnitski, 1963):

mk �
m̂k cos jÿ sin j
cos j� m̂k sin j

�18�

This leads to considerable simpli®cations in the case of the orthotropic matrix since m̂k corresponding to
the principal axes of orthotropy are given by simple expressions (17).

Elastic potential in stresses f0�sij � � �1=2�S0
ijklsijskl in the case of the orthotropic 2D matrix, expressed

in terms of the ``engineering constants'', has the form

f0�sij � � 1

2E 0
1

s2
11 �

1

2E 0
2

s2
22 ÿ

n012
E 0

1

s11s22 � 1

2G 0
12

s2
12 �19�

Hereafter, superscript ``0'' at elastic constants denotes constants of the matrix material and constants
without superscripts Ð the e�ective elastic moduli of a matrix with holes.

2.2. Elliptical hole arbitrarily oriented in an anisotropic matrix

For an elliptical hole in a matrix of arbitrary anisotropy, components of the hole compliance tensor
H, in coordinate axes x1, x2 oriented along the ellipses axes 2a and 2b (Fig. 2), are as follows (see
Appendix A for derivation):

H1111 � pb
A
S0

1111

�
a� b

ÿ
b1 � b2

��

H1112 � pb
2A

S0
1111

�
a�a1 � a2� � b

ÿ
a1b2 � a2b1

��
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H1122 � pab
A

S0
1111

ÿ
a1a2 ÿ b1b2

�

H1212 � p
4A

S0
1111

�
a2
ÿ
b1 � b2

�� ab
h
�a1 � a2�2�

ÿ
b1 � b2

�2i� b2
h
b1
�
a2
2 � b2

2

�
� b2

�
a2
1 � b2

1

�i�

H1222 � pa
2A

S0
1111

n
a
ÿ
a1b2 � a2b1

�� b
h
a1
�
a2
2 � b2

2

�
� a2

�
a2
1 � b2

1

�io

H2222 � pa
A
S0

2222

"
a

 
b1

a2
1 � b2

1

� b2
a2
2 � b2

2

!
� b

#
�20�

where ak, bk are the real and imaginary parts of roots mk of characteristic equation (13).
In the important case of the orthotropic matrix, these formulas can be transformed to explicitly re¯ect

the orientation of the hole with respect to the matrix orthotropy axes. Namely, introducing unit vectors
t and n along 2a and 2b axes of the ellipse and angle j between t and x1-direction of the matrix
orthotropy (Fig. 3), we obtain, after some algebra,

Htttt � pb
A

�
a

E 0
t

� b
�
C�1ÿD cos 2j���

Fig. 2. Elliptical hole arbitrarily oriented with respect to the anisotropy axes of the matrix.

Fig. 3. Elliptical hole in the orthotropic matrix �x 1, x 2 are the orthotropy axes).
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Htttn � pb
4A

(
a

"
1

E 0
2

ÿ 1

E 0
1

ÿ F cos 2j

#
� 2bCD

)
sin2j

Httnn � pab
4A

0@F sin22jÿ 4�������������
E 0

1E
0
2

q 1A

Htntn � pa2

4A
C�1ÿD cos2j� � pb2

4A
C�1�D cos2j� � pab

4A

264
0@ 1�������

E 0
1

q � 1�������
E 0

2

q 1A2

ÿF cos2 2j

375

Htnnn � pa
4A

(
2aCD� b

"
1

E 0
2

ÿ 1

E 0
1

� F cos2j

#)
sin2j

Hnnnn � pa
A

�
a
�
C�1�D cos2j��� b

E 0
n

�
�21�

where constants C, D and F are expressed in terms of the ``engineering constants'' of the matrix, E 0
1,

E 0
2, G

0
12, n012 as follows:

C � 1

2

�������
E 0

1

q
�

�������
E 0

2

q
�������������
E 0

1E
0
2

q �����������������������������������������������
1

G 0
12

ÿ 2n012
E 0

1

� 2�������������
E 0

1E
0
2

qvuut

D �
�������
E 0

1

q
ÿ

�������
E 0

2

q
�������
E 0

1

q
�

�������
E 0

2

q

F � 1� n012
E 0

1

� 1� n021
E 0

2

ÿ 1

G 0
12

�22�

and where E 0
t and E 0

n are Young's moduli of the matrix in t- and n-directions given by

1

E 0
t

� cos4j
E 0

1

�
 

1

G 0
12

ÿ 2n012
E 0

1

!
sin2j cos2j� sin4j

E 0
2

,

and

1

E 0
n

� sin4j
E 0

1

�
 

1

G 0
12

ÿ 2n012
E 0

1

!
sin 2j cos 2j� cos4j

E 0
2

:
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Remark. Although the set of 2D orthotropic moduli consists, generally, of four independent constants,
Hijkl Ð components (21) can, in principle, be expressed in terms of only three combinations of the
matrix moduli, E 0

1, E
0
1, 1=G

0
12ÿ2n012=E 0

1: Form (21), that contains larger number of matrix constants, is
given here, because it is shorter. It also has the advantage that constants C and D are measures of the
extent of the matrix anisotropy (in the case of cubic symmetry, D � 0; in the case of isotropy, C � 0,
D � 0, F � 0).

We will also need components of H-tensor in the principal axes of matrix orthotropy x1x2: They are as
follows:

H1111 � pL

A
�������
E 0

1

q 24�b2 ÿ a2� cos 2j� a2 � ab

L
�������
E 0

1

q 35

H1112 � p�b2 ÿ a2�L
2A

�������
E 0

1

q sin j cos j

H1122 � ÿ pab

A
�������������
E 0

1E
0
2

q

H1212 � pL

4A
�������������
E 0

1E
0
2

q �
�a2 ÿ b2�

� �������
E 0

2

q
ÿ

�������
E 0

1

q �
cos2j� a2

�������
E 0

1

q
� abL

�������������
E 0

1E
0
2

q
� b2

�������
E 0

2

q �

H1222 � p�b2 ÿ a2�L
2A

�������
E 0

2

q sin j cos j

H2222 � pL

A
�������
E 0

2

q 24�a2 ÿ b2� cos 2j� b2 � ab

L
�������
E 0

2

q 35 �23�

and are expressed in terms of three matrix constants: E 0
1, E

0
2 and combination

L �
�����������������������������������������������
1

G 0
12

ÿ 2n012
E 0

1

� 2�������������
E 0

1E
0
2

qvuut :

We now consider two limiting cases: circular hole and a crack. Besides being of interest of their own,
these two cases are important because compliance of an elliptical hole can be represented as a sum of
compliances of a circle and of two cracks (Section 2.5).

2.3. The case of a crack arbitrarily oriented in the orthotropic matrix

In the case of a crack, b � 0, a � l and H-tensor has form (9). If the crack is arbitrarily oriented in
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the orthotropic matrix, the dependence of H on the crack orientation (angle j between the crack line
and the x1 principal axis of orthotropy) is remarkably simple, and only two combinations, C and D, of
the (four) matrix moduli are present in H:

Htntn � pl 2

A
C�1ÿD cos2j�

Htnnn � pl 2

2A
CD sin 2j

Hnnnn � pl 2

A
C�1�D cos2j�

Other Hijkl � 0 �24�

This recovers results of Mauge and Kachanov (1994).
Expressions (24) imply that crack compliance tensor B (de®ned by (7)) is constant (independent of

crack orientation j):

B � pC
2
�1�D�e1e1 � pC

2
�1ÿD�e2e2 �25�

where e1, e2 are unit vectors along the matrix orthotropy axes. This means that H-tensor re¯ects the
crack orientation in a very simple way: through dyadic product of B with n only, see (9). As seen in
Section 3, constancy of B has important implications for the choice of the proper crack density
parameters.

Note that, since B is not proportional to unit tensor I, normal and shear modes are coupled: normal/
shear traction on a crack produces shear/normal CODs for an arbitrarily oriented crack (except for a
crack parallel to one of the matrix orthotropy axes).

As seen from (22), of the four matrix constants, Young's moduli E 0
1, E

0
2 play a special role: the case

E 0
1 � E 0

2, with no restrictions on shear modulus G 0
12 (cubic symmetry) is similar, to within a constant

multiplier, to the case of isotropy. In this case, crack compliance tensor B is proportional to unit tensor
I:

B � pI

8>>>><>>>>:
1

E 0
isotropic matrix

1

2E 0
1

��������������������������������
E 0

1

G 0
12

� 2ÿ 2n012

s
matrix of cubic symmetry

�26�

Remark. In the case of moderate matrix anisotropy in Young's moduli �E 0
1 and E 0

2 di�er by 40±50% or
less with no restrictions on shear modulus G 0

12), D is one order of magnitude smaller than unity, and,
with this accuracy, B 1 I, implying that the abovementioned coupling of the normal and shear modes
can be neglected. This case is thus approximately equivalent to the one of matrix isotropy.
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2.4. The case of a circular hole in the orthotropic matrix

In the case of a circular hole (of radius a ), components of H-tensor in the matrix orthotropy axes
x1x2 take the form

H1111 � pa2

AE 0
1

�
1� L

�������
E 0

1

q �

H1122 � ÿ pa2

A
�������������
E 0

1E
0
2

q

H1212 � pa2

4A
L

0@ 1�������
E 0

1

q � 1�������
E 0

2

q � L

1A

H2222 � pa2

AE 0
2

�
1� L

�������
E 0

2

q �
�27�

Remark 1. Although the circular hole is ``geometrically isotropic'', its in¯uence on the elastic compliance
is anisotropic (potential change Df, given by (6), is anisotropic). This anisotropy is opposite to the one
of the matrix: as seen from comparison of H1111 and H2222, the reduction of sti�ness due to the hole is
greater in the sti�er direction of the matrix. This implies that circular holes reduce the extent of the
matrix anisotropy. Physically, it is explained by the fact that ``loss of cross-section'' in the direction
normal to the sti�er direction of the matrix produces a larger contribution to the overall compliance
than an equal loss in the ``softer'' direction.

Remark 2. In the case of cubic symmetry of the matrix �E 0
1 � E 0

2, but G 0
12 remains an independent

constant), H-tensor of a circular hole does not reduce to the one for the isotropic matrix. This
sensitivity to the di�erence between cubic symmetry and isotropy constitutes an unexpected contrast
with the case of a crack, for which H-tensor has the same form (to within a multiplier) for the matrix of
cubic symmetry and for the isotropic matrix (see (26)).

In the case of the isotropic matrix, H1111 � H2222 � 3pa2=�AE 0�, H1122 � pa2=�AE 0�, H1212 �
2pa2=�AE 0�:

2.5. Compliance of an elliptical hole is a sum of compliances of a circular hole and two cracks

Based on the results of the preceding subsections, compliance tensor of an elliptical hole with axes 2a,
2b can be represented as a sum of compliance tensors of a circular hole of radius

�����
ab
p

and of two
mutually perpendicular cracks: crack 1 of length 2

�����������������
a�aÿ b�p

, parallel to 2a-axis and crack 2 of length
2
�����������������
b�aÿ b�p

, parallel to 2b-axis; compliance of crack 2 being taken with the negative sign (Fig. 4):

H � Hcircle �Hcrack 1 ÿHcrack 2 �28�
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or, in components,

H1111 � pL

A
�������
E 0

1

q 24ab0@1� 1

L
�������
E 0

1

q 1A� a�aÿ b� sin2jÿ b�aÿ b� cos2j

35

H1112 � ÿ pL

2A
�������
E 0

1

q �
0� a�aÿ b� � b�aÿ b�

�
sin j cos j

H1122 � ÿ p

A
�������������
E 0

1E
0
2

q �ab� 0ÿ 0�

H1212 � pL

4A
�������������
E 0

1E
0
2

q �
ab

�
L

�������������
E 0

1E
0
2

q
�

�������
E 0

1

q
�

�������
E 0

2

q �
� a�aÿ b�

� �������
E 0

1

q
sin2j�

�������
E 0

2

q
cos2j

�

ÿ b�aÿ b�
� �������

E 0
1

q
cos 2j�

�������
E 0

2

q
sin2j

��

H1222 � ÿ pL

2A
�������
E 0

2

q �
0� a�aÿ b� � b�aÿ b�

�
sin j cos j

Fig. 4. Representation of ellipse's compliance tensor H as a sum of H of a circular hole (of radius
�����
ab
p � plus H of a crack parallel

to 2a axis (of length 2
�����������������
a�aÿ b�p � minus H of a crack parallel to 2b axis (of length 2

�����������������
b�aÿ b�p

).
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H2222 � pL

A
�������
E 0

2

q 24ab0@1� 1

L
�������
E 0

2

q 1A� a�aÿ b� cos2jÿ b�aÿ b� sin2j

35 �29�

The three terms in each of the brackets represent the contribution of the circular hole and of the
mentioned two cracks, correspondingly. In the cases when some of these contributions vanish, the
corresponding terms are entered as zeros (for example, two zeros in the expression for H1122 re¯ect the
fact that Poisson's ratio e�ect is not a�ected by cracks).

In the case of the isotropic matrix, this representation implies that the anisotropy due to non-
randomly oriented elliptical holes is the same as the anisotropy due to a certain set of cracks. Since a
solid with non-interacting cracks is orthotropic for any orientational distribution of cracks (Kachanov,
1980), this implies orthotropy for a solid with ellipses, recovering the results of Kachanov et al. (1994).

Thus, any set of non-interacting elliptical holes can be represented as a mixture of non-interacting
circular holes and cracks of appropriate sizes and orientations.

Remark. Sizes of the circle and of the cracks do not depend on the matrix constants. In particular,
representation (29) holds for the isotropic matrix.

3. One family of parallel ellipses of an arbitrary orientation

This case is of a fundamental importance, since results for any orientational distribution of non-
interacting ellipses can be obtained by integration over orientations (with appropriate distribution
density) of the results of this section.

For one family of parallel holes inclined at an angle j with respect to x1 axis of the matrix
orthotropy, tensor H� �PH�k� entering expression (10) for potential Df, can be expressed in terms of
porosity p � �1=A�pP�ab��k� (area fraction of holes) and symmetric second rank hole density tensor

bbb � p
A

X
k

ÿ
a2nn� b2tt

��k�
:

where 2a and 2b are ellipses' axes along directions of unit vectors t and n, correspondingly.

H �1111 �
1

E 0
1

�
p� L

�������
E 0

1

q ÿ
bnn sin2j� btt cos 2j

��

H �1112 �
L

2
�������
E 0

1

q ÿ
btt ÿ bnn

�
sin j cos j

H �1212 �
L

4
�������������
E 0

1E
0
2

q �
pL

�������������
E 0

1E
0
2

q
�

�������
E 0

1

q ÿ
bnn sin2j� btt cos 2j

�
�

�������
E 0

2

q ÿ
bnn cos 2j� btt sin 2j

��

H �1122 � ÿ
p�������������

E 0
1E

0
2

q
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H �1222 �
L

2
�������
E 0

2

q ÿ
btt ÿ bnn

�
sin j cos j

H �2222 �
1

E 0
2

�
p� L

�������
E 0

2

q ÿ
bnn cos2j� btt sin2j

��
�30�

where bnn � �1=A�p
P

a�k�2 and btt � �1=A�p
P

b�k�2 are components of bbb:
The e�ective elastic constants, generally, are non-orthotropic (except for the case when the holes are

aligned with the matrix orthotropy axes). They immediately follow from Eqs. (10) and (11), with H�

given by Eq. (30). A partial set of the e�ective elastic moduli, given in terms of the ``engineering
constants'', is

E1

E 0
1

�
�
1� p� L

�������
E 0

1

q ÿ
bnn sin2j� btt cos2j

��ÿ1

E2

E 0
2

�
�
1� p� L

�������
E 0

2

q ÿ
bnn cos 2j� btt sin2j

��ÿ1

G12

G 0
12

�
241� pL2G 0

12

2
� LG 0

12

2
�������
E 0

1

q ÿ
bnn cos 2j� btt sin2j

�
� LG 0

12

2
�������
E 0

2

q ÿ
bnn sin 2j� btt cos 2j

�35ÿ1

n12
E1
� n012

E 0
1

� p�������������
E 0

1E
0
2

q �31�

3.1. Circular holes in the orthotropic matrix

In the case of circular holes of radii a�k�, porosity p � �1=A�pP a�k�2 and hole density tensor is
proportional to unit tensor I : bbb � pI, so that the potential change due to holes takes the form:

Df � 1

2
psss :

26641� L
�������
E 0

1

q
E 0

1

e1e1e1e1 ÿ 1�������������
E 0

1E
0
2

q �e1e1e2e2 � e2e2e1e1�

� L

4

0@ 1�������
E 0

1

q � L� 1�������
E 0

2

q 1A�e1e2 � e2e1��e1e2 � e2e1� �
1� L

�������
E 0

2

q
E 0

2

e2e2e2e2

3775 : sss
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� 1

2
p

26641� L
�������
E 0

1

q
E 0

1

s2
11 ÿ

2�������������
E 0

1E
0
2

q s11s22 �
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1
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E 0

2

q 1ALs2
12 �
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2
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The e�ective moduli, expressed in terms of p, immediately follow:

E1 � E 0
1

�
1� p

�
1� L

�������
E 0

1

q ��ÿ1

E2 � E 0
2

�
1� p

�
1� L

�������
E 0

2

q ��ÿ1

G12 � G 0
12

241� pLG 0
12

2

0@ 1�������
E 0

1

q � L� 1�������
E 0

2

q 1A35ÿ1

n12
E1
� n012

E 0
1

� p�������������
E 0

1E
0
2

q �33�

These results are illustrated by the dependence of E1=E2 on porosity p in Fig. 5 (upper line).

3.2. Cracks arbitrarily oriented in the orthotropic matrix

As discussed above, fourth rank tensor �1=A�P�l 2nBn��k� in Eq. (12) is the proper density parameter.
E�ective properties are expressed in terms of this parameter in a uni®ed way for all orientational
distributions of cracks. In certain simplest cases of the orientational distributions (notably, random
orientations and one family of parallel cracks), these expressions can be reduced to formulas in terms of
the conventional crack density r given by Eq. (1).

Since H-tensor of a crack has the form (9), the proper crack density parameter is the following fourth

Fig. 5. Ratio E1=E2 for the orthotropic matrix E 0
1=E

0
2 � 4:1, E 0

1=G
0
12 � 10, n012 � 0:277, n021 � 0:068� with randomly oriented ellip-

tical holes, as function of porosity p, for holes of aspect ratios b/a equal to 1 (circles), 1/2 and 1/4.
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rank tensor:

H� � 2

A

X�l 2nBn��k� �appropriately symmetrized� �34�

or, in components,

H �ijkl �
1

3

ÿ
Bijakl � Bklaij � Bikajl � Bilajk � Bjkail � Bjlaik

� �35�

where aaa is the second rank crack density tensor (2).
Potential Df takes the form (with the account of (25)):

Df � 1

6

�
2�sss : B��sss : aaa� � �sss � aaa � sss� : B� �sss � B � sss� : aaa� �sss � aaa� : �B � sss� � �sss � B� : �aaa � sss��

� pC
12

n
6�1�D�a11s2

11 � 6�1ÿD�a22s2
22 � 4�a11 � a22 �s2

12 �
��1�D�a22 � �1ÿD�a11

�
s11s22

o
�36�

Potential (36) yields e�ective moduli for any orientational distribution of cracks in a uni®ed way.
In the case of one family of arbitrarily oriented parallel cracks, the e�ective properties are non-

orthotropic. A partial set of the e�ective moduli given in terms of the ``engineering constants'' is

E1

E 0
1

� �1� prC�1ÿD�E 0
1 sin2j

�ÿ1
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�
�
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In particular, in the case when cracks are parallel to one of the orthotropy axes of the matrix x1-axis),

E1 � E 0
1

E2 � E 0
2

�
1� pL

�������
E 0

2

q
r

�ÿ1

G12 � G 0
12

0@1� pLG 0
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q r
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n12 � n012 �38�
recovering results of Gottesman et al. (1980).

In the case of randomly oriented cracks,
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n12
E1
� n012

E 0
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�39�

Note that in two special cases considered above Ð parallel and randomly oriented cracks Ð the
e�ective moduli can be expressed in terms of conventional scalar density r: In general, however,
parameter r is not su�cient (as in the case of two families of parallel cracks at an angle to each other).

3.3. The case of elliptical holes in the isotropic matrix

In this case, E 0
1 � E 0

2 � E 0, G 0
12 � 0:5E 0=�1� n0�, L � 2=

�������
E 0
p

and

E1 � E 0
ÿ
1� p� 2b11

�ÿ1
E2 � E 0

ÿ
1� p� 2b22

�ÿ1
G12 � G 0

�
1� 1

2�1� n0 �
ÿ
b11 � 2p� b22

��ÿ1

n12 �
ÿ
n0 � p

�ÿ
1� p� 2b11

�ÿ1 �40�
recovering results of Tsukrov and Kachanov (1993) and Kachanov et al. (1994).

4. Randomly oriented ellipses: gradual disappearance of anisotropy as the hole density increases

In the case of randomly oriented ellipses, the components of hole density tensor H� �PH�k�,
calculated by replacing the summation over ellipses by integration over orientations (in the assumption
that the orientational distribution of holes is uncorrelated with their sizes and aspect ratio distributions),
are given in terms of porosity p and eccentricity parameter
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q � p
A

X�aÿ b�2�k� �41�

as follows
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Note that, in spite of random orientations, tensor H� �PH�k� is not isotropic. Physically, this means
that randomly oriented ellipses produce a higher impact on the compliance in the ``sti�er'' direction of
the matrix and, thus, reduce the overall anisotropy (as seen from formulas (43) below).

The e�ective elastic moduli are orthotropic and given by
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We emphasize that, even in the case of random orientations of holes, the moduli cannot be expressed in
terms of porosity p alone Ð a second hole density parameter q is also needed.

The ratio of Young's moduli E1=E2 indicating the extent of anisotropy is:
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Figs. 5±7 demonstrate dependence of the extent of the overall anisotropy (as measured by ratio E1=E2�
on several geometric parameters. Fig. 5 shows that randomly oriented ellipses reduce the e�ective
anisotropy and that this e�ect is more pronounced, at the same porosity p, for narrower ellipses (smaller
b/a ). This generalizes a similar observation of Mauge and Kachanov (1994) on cracks �b=a � 0� in an
anisotropic matrix. The dependence of E1=E2 on the aspect ratio of the ellipses (major axes of the
ellipses are kept constant, minor axes increase) is illustrated in Fig. 6. An interesting observation is that
the decrease in E1=E2 does not change much, as holes are transformed from cracks to circles (as long as
the major ellipses' axes are kept constant). Fig. 7 shows E1=E2 as a function of aspect ratio b=a at
constant porosity. Note that, in the range of b=a from 0.5 to 1.0, ratio E1=E2 is almost insensitive to
b=a:

Fig. 6. Ratio E1=E2 for the orthotropic matrix �E 0
1=E

0
2 � 4:1, E 0

1=G
0
12 � 10, n012 � 0:277, n021 � 0:068� with randomly oriented ellip-

tical holes, as function of ellipses' aspect ratio b/a. Each of the two curves corresponds to keeping the density r of ``cracks'' (lines

of the major ellipses' axes) constant, while b/a increases.

Fig. 7. Ratio E1=E2 for the orthotropic matrix �E 0
1=E

0
2 � 4:1, E 0

1=G
0
12 � 10, n012 � 0:277, n021 � 0:068� with randomly oriented ellip-

tical holes, as function of ellipses' aspect ratio b/a for porosity of holes p � �p=A�P�ab��k� � 0:2 (solid line) or 0.3 (dashed line).
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5. Conclusions

E�ective elastic properties of an anisotropic matrix with elliptical holes of an arbitrary orientational
distribution are derived in closed form. One of the key problems is the identi®cation of the proper
parameters of defect density that correctly re¯ect the individual defect contributions into the overall
compliances. Expressions of the e�ective moduli in terms of such parameters apply to all orientational
distributions of holes. Another advantage is that any mixtures of holes of diverse eccentricities
(including cracks) are covered in a uni®ed way.

Several physically interesting e�ects are identi®ed and discussed. Among them:

. Elongated holes normal to the sti�er direction of the matrix produce a higher impact on the e�ective
compliance than the ones normal to the softer direction.

. Randomly oriented holes reduce the extent of the overall anisotropy.

. At the same porosity, holes of smaller aspect ratios produce a larger contribution into the overall
compliances.

. Circular holes are ``anisotropic objects'', in the sense that their in¯uence on the overall compliance
(re¯ected in potential Df� is anisotropic (the highest increase of compliance is in the sti�er direction of
the matrix).
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Appendix A. Derivation of hole compliance tensor H for an elliptical hole in a matrix possessing arbitrary
elastic anisotropy

We derive here H-tensor given by expression (20) of the main text, by utilizing the complex variable
formalism developed for anisotropic solids by Lekhnitski (1936) and Savin (1961).

Stress functions f�z1� and c�z2� for a 2D anisotropic solid with an elliptical hole (axes 2a and 2b are
directed along x1 and x2 axes, correspondingly) under a uniform uniaxial loading P inclined at angle a
to x1-axis were derived by Lekhnitski (1936) using conformal mapping of z-plane onto z-plane that
transforms the exterior of the elliptical hole into the interior of unit circle z � eiy:

f�z1� � A1z1 � f0�z1�, c�z2� � �A2 � iA3�z2 � c0�z2� �A1�
where

f0�z1� � ÿP
i
ÿ
aÿ im1b

�
4�m1 ÿ m2�

b
ÿ
m2 sin 2a� 2 cos2a

�� ia
ÿ
2m2 sin2a� sin 2a

�
z1 �

���������������������������������
z21 ÿ

ÿ
a� m2

1 b
2
�q
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c0�z2� � P
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are functions of z1 � a�im1b
2 z� aÿim1b

2
1
z and z2 � a�im2b

2 z� aÿim2b
2

1
z , respectively. Constants A1, A2, A3 are
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� 2 :

Values of stress functions j and f at the hole boundary are as follows (angle y characterizes a current
point on the boundary):

j � jrc cos y� jrs sin y� i
ÿ
jic cos y� jis sin y

�
f � frc cos y� frs sin y� i

ÿ
fic cos y� fis sin y

� �A2�

expressed in terms of the following functions of angle a:
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jrs � PM
n
2a
ÿ
a2b1 ÿ a1b2

�
sin2a� �aÿb1 ÿ b2

�� b
�
a1a2 ÿ a2

2 � b1b2 ÿ b2
2

�
�sin 2a

� 2b�a1 ÿ a2� cos2a
o
ÿ PNba1�

�
a2
2 � b2

2

�
sin2a� a2 sin 2a� cos2a�

jic � ÿPM
n
2a
ÿ
a2b1 ÿ a1b2

�
sin2a� �aÿb1 ÿ b2

�� b
�
a1a2 ÿ a2

2 � b1b2 ÿ b2
2

�
�sin 2a

� 2b�a1 ÿ a2� cos2a
o

jis � PM
n
2a
�
a1a2 ÿ a2

2 � b1b2 ÿ b2
2

�
sin2a� �a�a2 ÿ a1� � b

ÿ
a1b2 ÿ a2b1

��
sin 2a

� 2b
ÿ
b2 ÿ b1

�
cos 2a

o
ÿ PNbb1�

�
a2
2 � b2

2

�
sin2a� a2 sin 2a� cos 2a�
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frc � PM
n
2a
�
a1a2 ÿ a2

1 � b1b2 ÿ b2
1

�
sin2a� �a�a2 ÿ a1� � b

ÿ
a2b1 ÿ a1b2

��
sin 2a

� 2b
ÿ
b1 ÿ b2

�
cos 2a

o
� PNa�

�
a2
1 ÿ b2

1 ÿ 2a1a2
�

sin2aÿ a2 sin 2aÿ cos2a�

frs � PM
n
2a
ÿ
a1b2 ÿ a2b1

�
sin2a� �aÿb2 ÿ b1

�� b
�
a1a2 ÿ a2

1 � b1b2 ÿ b2
1

�
�sin 2a

� 2b�a2 ÿ a1� cos2a
o
� PN

b

2

n
2a1

�
a2
2 � b2

2

�
sin 2a�

�
a2
1 � a2

2 ÿ b2
1 � b2

2

�
sin 2a� 2a1 cos 2a

o

fic � ÿ PM
n
2a
ÿ
a1b2 ÿ a2b1

�
sin 2a� �aÿb2 ÿ b1

�� b
�
a1a2 ÿ a2

1 � b1b2 ÿ b2
1

�
�sin 2a

� 2b�a2 ÿ a1� cos2a
o
� PN

a

2b2

n
2
h
a2
�
a2
1 ÿ b2

1

�
ÿ a1

�
a2
2 ÿ b2

2

�i
sin 2a

�
�
a2
1 ÿ a2

2 � b2
2 ÿ b2

1

�
sin 2a� 2�a1 ÿ a2 � cos 2a

o

fis � PM
n
2a
�
a1a2 ÿ a2

1 � b1b2 ÿ b2
1

�
sin2a� �a�a2 ÿ a1� � b

ÿ
a2b1 ÿ a1b2

��
sin 2a

� 2b
ÿ
b1 ÿ b2

�
cos 2a

o
� PN

b

2b2
�2
�
a2
2 � b2

2

��
ÿ a2

1 � a1a2 � b2
1

�
sin 2a

� a2
�
ÿ a2

1 � a2
2 � b2

1 � b2
2

�
sin 2a� 2

�
a2
2 ÿ a1a2 � b2

2

�
cos 2a�

where M and N are constants, given by

M � 1

4

h
�a2 ÿ a1�2�

ÿ
b2 ÿ b1

�2iÿ1
, N � 1

4

h
�a2 ÿ a1�2�b2

2 ÿ b2
1

iÿ1
It follows from formulas (14) that the displacements of the boundary of the hole are

u1 � 2
ÿ
jrcpr1 � frcpr2 ÿ jicpi1 ÿ ficpi2

�
cos y� 2

ÿ
jrspr1 � frspr2 ÿ jispi1 ÿ fispi2

�
sin y

u2 � 2
ÿ
jrcqr1 � frcqr2 ÿ jicqi1 ÿ ficqi2

�
cos y� 2

ÿ
jrsqr1 � frsqr2 ÿ jisqi1 ÿ fisqi2

�
sin y �A3�

where prk, qrk and pik, qik are real and imaginary parts of pk and qk, correspondingly.
In z-plane, n1�y� dG � ÿb cos y dy and n2�y� dG � a sin y dy, so that integral (4) can be readily

evaluated:

De11 � 2pb
A

ÿ
jrcpr1 � frcpr2 ÿ jicpi1 ÿ ficpi2

�

De12 � pa
A

ÿÿ jrspr1 ÿ frspr2 � jispi1 � fispi2
�� pb

A

ÿ
jrcqr1 � frcqr2 ÿ jicqi1 ÿ ficqi2

�
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De22 � 2pa
A

ÿÿ jrsqr1 ÿ frsqr2 � jisqi1 � fisqi2
� �A4�

Comparing with the general structure of the relation between De and loading P (components of (5) in
the case of uniaxial loading):

De11 � P
ÿ
H1111 cos 2a�H1112 sin 2a�H1122 sin2a

�
De12 � P

ÿ
H1112 cos 2a�H1212 sin 2a�H1222 sin2a

�
De22 � P

ÿ
H1122 cos 2a�H1222 sin 2a�H2222 sin2a

�
�A5�

and equating coe�cients at cos 2a, sin 2a and sin2a in Eqs. (A4) and (A5), yields expressions (20) for
components of H-tensor.

References

Bristow, J.R., 1960. Microcracks and the static and dynamic elastic constants of annealed and heavily cold-worked metals. British

Journal of Applied Physics 11, 81±85.

Carvalho, F., Labuz, J., 1996. Experiments on e�ective elastic modulus of two-dimensional solids with cracks and holes. Int. J.

Solids and Struct 33 (28), 4119±4130.

Gottesman, T., Hashin, Z., Brull, M.A., 1980. E�ective elastic moduli of cracked ®ber composites. In: Bunsell et al. (Eds.),

Advances in Composite Materials. Pergamon Press, Oxford, pp. 749±758.

Hill, R., 1963. Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357±372.

Kachanov, M., 1980. Continuum model of medium with cracks. J. Eng. Mech. Div 106 (EM5), 1039±1051.

Kachanov, M., 1992. E�ective elastic properties of cracked solids: critical review of some basic concepts. Appl. Mech. Reviews 45

(8), 304±335.

Kachanov, M., 1993. Elastic solids with many cracks and related problems. In: Hutchinson, J.W., Wu, T.Y. (Eds.), Advances in

Applied Mechanics, vol. 30. Academic Press, New York, pp. 259±445.

Kachanov, M., Tsukrov, I., Sha®ro, B., 1994. E�ective properties of solids with cavities of various shapes. Appl. Mech. Reviews

47 (1), 151±174.

Lekhnitski, S.G., 1936. Stresses in an in®nitely large anisotropic plate which is weakened by an elliptical hole. Dokl. Akad. Nauk

SSSR 4(3), 25±45.

Lekhnitski, S.G., 1963. Theory of Elasticity of Anisotropic Elastic Body. Holden-Day, San-Francisco.

Mauge, C., Kachanov, M., 1992. Interacting arbitrarily oriented cracks in anisotropic matrix. Stress intensity factors and e�ective

moduli. Int. J. Fract 58, R69±R74.

Mauge, C., Kachanov, M., 1994. E�ective elastic properties of anisotropic materials with arbitrarily oriented cracks. J. Mech.

Phys. Solids 42, 1±24.

Savin, G.N., 1961. Stress Concentration around Holes. Pergamon Press, London.

Tsukrov, I., Kachanov, M., 1993. Solids with holes of irregular shapes: e�ective moduli and anisotropy. Int. J. Fract 64, R9±R12.

Tsukrov, I., Kachanov, M., 1998. Anisotropic material with arbitrarily oriented cracks and elliptical holes: e�ective elastic moduli.

Int. J. Fract 92, L9±L14.

Vavakin, A.S., Salganik, R.L., 1975. E�ective characteristics of nonhomogeneous media with isolated inhomogeneities. Mech. of

Solids 10, 58±66, Allerton Press (English translation of Izvestia AN SSSR, Mekhanika Tverdogo Tela).

I. Tsukrov, M. Kachanov / International Journal of Solids and Structures 37 (2000) 5919±5941 5941


